

Commercial PV Systems Range in Size from 5 kW to 5 MW

1.2 MWp at S. Rita, California

PV Industry Growth vs. U.S. Electrical Demand

Renewables Roadmap: Renewables Growth vs. U.S. Electrical Demand

Federal Support for Renewables Has Been Minimal

1943-1999 US Federal Subsidies: Renewable Energies vs. Other Energy Sources (\$ Billions)

Source: Renewable Energy Policy Project, Research Report 11, "Federal Energy Subsidies: Not All Technologies Are Created Equal," MRG & Associates, an environmental and economics consulting firm, Madison,WI. July 2000.

Losing the PV Race: Comparative Federal Investment in PV (\$M)

U.S. Owned PV Production has declined dramatically relative to world production

PV provides more jobs/MW than Coal

PowerLight Corporation Overview

- PV Sys Manufacturer & Solutions Provider Focus: Commercial / Industrial / Utility
- Founded 1991; Based in SF Bay Area
- Global offices and customer base
- High internal growth
 - 1) 2x each year since 1997
 - 2) "Inc. 500" last 2 Years
- Profitable since inception
- Grid-Tied Leader; with60% Market Share in America

PowerLight Corporation

PowerLight's products: high-value solar electric systems

PV is coincident with customer loads

Load Match: Potential Benefits

- Peak Energy
- Loss Savings
- Peak Capacity
- Defer T&D Upgrade
- Voltage Support
- Operational Savings

Selected PV Integration Considerations

- 1. Efficiency (5 to 15 watts / square foot)
- 2. Frame or Frameless (Up to \$20/module)
- 3. Mechanical Size
- 4. Mechanical Strength (tempered vs annealed)
- 5. Operating Voltage & Fusing Requirements
- 6. Color
- 7. Reflectivity
- 8. Fire Rating (Class A, B, or C)
- 9. UV Transmissivity

Component vs System Procurement: Design & Procurement Realities

- 1. No Module Best for Every Application
- 2. No one PV technology "Winner"; many winners.
- 3. The least expensive PV in \$/W often does not result in the most affordable system

Always Purchase Turn-Key Systems with Warranties!

Tangent - For NREL Only Thin-Film vs Crystalline; Time for a status check

Over the last 8 years:

- 1. Solar grade silicon prices have dropped by 10X
- 2. Thin-film commercialization has slipped substantially
- 3. Crystalline technologies have improved dramatically

Selected PowerLight Thin-Film Projects: 1994 to 2002

30 kW First Solar Rhode Island, 8/2000

600 kW UniSolar Bakersfield, 5/02

3 kW APS Folsom, CA 9/94

42 kW BP a-Si Cape Charles, VA, 9/99

45 kW BP a-Si Sacramento, 6/98

Integration Considerations for PV Power Modules > 40 watts

		Thin-Film	Crystalline	Approx. Sys. Cost
		(Glass Substrate)	Technologies	Impact to Thin-Film
1	Module Power (to Edge)	4 to 7.5 W/Ft ²	10 to 15 W/Ft ²	\$0.30/W - \$1.25/W
2	Mechanical Strength	Annealed/ Heat Strengthened	Tempered (5 to 10X stronger)	\$0.06/W - \$0.30/W
3	Lamination QA/QC	Poor	Good	Included in #2
4	Module O.C. Voltage	45V to 100V typ.	20V to 50V typ.	\$0.03/W - \$0.33/W
5	Typical 'String' Power	200W to 750W	1500W to 3000W	Included in #4
6	Stability	Poor	Good (Not Great)	\$0.30/W - \$0.60/W
7	Voltage Isolation	Intermittent	Excellent	Included in #6
8	Module Design Flex.	Poor	Excellent	Not quantified
9	Blocking Diode Req'd	Yes	No	\$0.02/W - \$0.05/W
10	Opaque to UV?	No	Yes	\$0.00/W - \$0.10/W
11	End of Life Recycle?	Some	No	\$0.00/W - \$0.20/W
Avg cost impact:		\$1.77/W	TOTAL:	\$0.71/W - \$2.83/W

Crystalline Progress Example: Sanyo HIP Technology 17.3% Cell / 15.3% module, outdoor testing

PowerGuard®

The best mounting solution for flat roofs

- Patented
- Lightweight
- No penetration
- Insulates roof
- Class A/B Fire
- Pre-engineered
- UL listed

PowerGuard ® Palletized shipping and lifting

PowerGuard ® Fast non-invasive installation

PowerGuard ® Completed Array. 120 kW Installed in 1 day

PowerGuard ® Monitoring performance of each system

PowerGuard Performance Mauna Lani Hotel; 1999 - 2001

Mauna Lani Bay Hotel: PowerGuard Solar Performance for 1999, 2000, 2001

Photovoltaic Building Economics: Simplistic Payback Analysis, Hypothetical \$1.5 million Project

Case Study 1: Santa Rita Jail 1100 kW PowerGuard System & Energy Efficiency \$7 Million Net Savings Over Project Life

Photovoltaic Building Economics: Comprehensive Perspective

Crystalline Progress Example: Sanyo HIP Technology 17.3% Cell / 15.3% module, outdoor testing

